YE Xuemin, ZHANG Jiankun, LI Chunxi
2017, 37(7): 558-568.
Taking a two-stage variable-pitch axial flow fan as an example, the performance of the fan respectively with five differently shaped blade tips was simulated using Fluent software, so as to obtain the distribution of sound source and acoustic characteristics based on large eddy simulation and FW-H noise model. Results show that all the five blade tips in different shapes can improve the fan performance, in which, the countercurrent-flow-grooved blade tip has the highest improvement effect, followed by the double grooved blade tip, the up-step blade tip and the down-step blade tip, while the current-flow-grooved blade tip only improves the fan performance at lower flow rates. After improving the tip shape of blade, the noise level at tip region and leading edge increases apparently, due to enhanced leakage vortex at blade tip, which are the main sound sources. The tip shape has a significant effect on the amplitude of sound pressure, especially in the area closer to the noise source. The noise within the fan is mainly of the low and medium frequency rotational type, and the noise in all regions reaches its peak value at the fundamental frequency. The blade tip grooving exhibits a slightly increased effect on the sound level resulted from rising frequency, and the morphology of frequency spectrum changes appreciably.