Calculation and Analysis on Oxidation Rates of Ferritic-Martensitic Steels in Supercritical Water

SUN Li, YAN Weiping

PDF(778 KB)
Journal of Chinese Society of Power Engineering ›› 2018, Vol. 38 ›› Issue (2) : 156-162.

Calculation and Analysis on Oxidation Rates of Ferritic-Martensitic Steels in Supercritical Water

  • SUN Li, YAN Weiping
Author information +
History +

Abstract

Based on an available space model of duplex oxide scale, the oxidation rates of two ferritic-martensitic steels were predicted in the environment of supercritical water at 400℃, 500℃ and 600℃, while the diffusion coefficients of iron in magnetite and Fe-Cr spinel were extrapolated at relatively low temperatures. Results show that the oxygen partial pressure at the magnetite/supercritical water interface meets the requirement of reaction equilibrium on equivalent oxygen partial pressure. The oxidation simulation results of NF616 steel at 500℃ and 600℃ and of HCM12A steel at 600℃ are found to be close to the experimental data, indicating that the consumption is basically effective. The relative error of HCM12A steel at both 400℃ and 500℃ between oxidation simulation and actual measurements is 40%, and its oxidation rate is less than that of EPRI by 1-2 orders of magnitude.

Key words

supercritical water / oxide scale / ferritic-martensitic steel / oxidation rate

Cite this article

Download Citations
SUN Li, YAN Weiping. Calculation and Analysis on Oxidation Rates of Ferritic-Martensitic Steels in Supercritical Water. Journal of Chinese Society of Power Engineering. 2018, 38(2): 156-162

References

[1] KRITZER P. Corrosion in high-temperature and supercritical water and aqueous solutions:a review[J]. The Journal of Supercritical Fluids, 2004, 29(1/2):1-29.
[2] KLUEH R L, NELSON A T. Ferritic/martensitic steels for next-generation reactors[J]. Journal of Nuclear Materials, 2007, 371(1/3):37-52.
[3] 钟祥玉, 吴欣强, 韩恩厚. 核级不锈钢和铁素体-马氏体耐热钢在400℃/25 MPa超临界水中的腐蚀行为[J]. 金属学报, 2011, 47(7):932-938. ZHONG Xiangyu, WU Xinqiang, HAN Enhou. Corrosion behaviors of nuclear-grade stainless steel and ferritic-martensitic steel in supercritical water[J]. Acta Metallurgica Sinica, 2011, 47(7):932-938.
[4] 尹开锯, 邱绍宇, 唐睿, 等. 铁素体-马氏体钢P91和P92在超临界水中腐蚀后氧化膜多孔性分析[J]. 中国腐蚀与防护学报,2010, 30(1):1-5. YIN Kaiju, QIU Shaoyu, TANG Rui, et al. Characterization of the porosity of the oxide scales on ferritic-martensitic steel P91 and P92 exposed in supercritical water[J]. Journal of Chinese Society for Corrosion and Protection, 2010, 30(1):1-5.
[5] 马云海, 郑开云. 四种锅炉管材料650℃/26 MPa的蒸汽氧化研究[J]. 动力工程学报, 2015, 35(6):509-516. MA Yunhai, ZHENG Kaiyun. Study on steam oxidation of 4 boiler tube materials at 650℃/26 MPa[J]. Journal of Chinese Society of Power Engineering, 2015, 35(6):509-516.
[6] AMPORNRAT P, WAS G S. Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9 in supercritical water[J]. Journal of Nuclear Materials, 2007, 371(1/3):1-17.
[7] BETOVA I, BOJINOV M, KINNUNEN P, et al. Composition, structure, and properties of corrosion layers on ferritic and austenitic steels in ultra super critical water[J]. Journal of the Electro chemical Society, 2006, 153(11):B464-B473.
[8] ANGELL M G, LISTER S K, RUDGE A. The effect of steam pressure on the oxidation behavior of annealed 9Cr 1Mo boiler tubing materials[C]//15th International Conference on the Properties of Water and Steam (ICPWS XV).Berlin, Germany:[s.n.], 2008.
[9] ZHANG Naiqiang, XU Hong, LI Baorong, et al. Influence of the dissolved oxygen content on corrosion of the ferritic-martensitic steel P92 in supercritical water[J]. Corrosion Science, 2012, 56:123-128.
[10] BISCHOFF J, MOTTA A T. Oxidation behavior of ferritic-martensitic and ODS steels in supercritical water[J]. Journal of Nuclear Materials, 2012, 424(1/3):261-276.
[11] ZHONG Xiangyu, WU Xinqiang, HAN Enhou. Effects of exposure temperature and time on corrosion behavior of a ferritic-martensitic steel P92 in aerated supercritical water[J]. Corrosion Science, 2015, 90:511-521.
[12] ROUILLARD F, MARTINELLI L. Corrosion of 9Cr steel in CO2 at intermediate temperature Ⅲ:modelling and simulation of void-induced duplex oxide growth[J]. Oxidation of Metals, 2012, 77(1/2):71-83.
[13] TAN L, REN X, ALLEN T R. Corrosion behavior of 9-12% Cr ferritic-martensitic steels in supercritical water[J]. Corrosion Science, 2010, 52(4):1520-1528.
[14] MARTINELLI L, BALBAUD-CéLéRIER F, TERLAIN A, et al. Oxidation mechanism of an Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy at 470℃ (part Ⅱ)[J]. Corrosion Science, 2008, 50(9):2537-2548.
[15] ATKINSON A, O'DWYER M L, TAYLOR R I.55Fe diffusion in magnetite crystals at 500℃ and its relevance to oxidation of iron[J]. Journal of Materials Science, 1983, 18(8):2371-2379.
[16] BACKHAUS R M, DIECKMANN R. Defects and cation diffusion in magnetite (VⅡ):diffusion controlled formation of magnetite during reactions in the iron-oxygen system[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1986, 90(8):690-698.
[17] TÖPFER J, AGGARWAL S, DIECKMANN R. Point defects and cation tracer diffusion in (Cr<i>xFe1-x)3-δO4 spinels[J]. Solid State Ionics, 1995, 81(3/4):251-266.
[18] ŻUREK J, MICHALIK M, SCHMITZ F, et al. The effect of water-vapor content and gas flow rate on the oxidation mechanism of a 10%Cr-ferritic steel in Ar-H2O mixtures[J]. Oxidation of Metals, 2005, 63(5/6):401-422
[19] FURUKAWA T, MVLLER G, SCHUMACHER G, et al. Effect of oxygen concentration and temperature on compatibility of ODS steel with liquid, stagnant Pb45Bi55[J]. Journal of Nuclear Materials, 2004, 335(2):189-193.
[20] GASKELL D R. Introduction to metallurgical thermo dynamics[M].2nd ed. London:Taylor & Francis, 1981.
[21] TAN L, REN X, ALLEN T R. Corrosion behavior of 9-12% Cr ferritic-martensiticsteels in supercritical water[J]. Corrosion Science, 2010,52(4):1520-1528.
[22] AMPORNRAT P. Determination of oxidation mechanisms of ferritic-martensitic alloys in supercritical water[D]. Michigan, USA:The University of Michigan, 2011.
[23] DOOLEY R B, WRIGHT I G, TOETORELLI P F, et al. Program on technology innovation:oxide growth and exfoliation on alloys exposed to steam[R]. California, USA:Electric Power Research Institute, 2007.
PDF(778 KB)

661

Accesses

0

Citation

Detail

Sections
Recommended

/