Wind Turbine Aerodynamic Performance Optimization by Individual Pitch Control Based on Trailing Edge Separation Model

ZHANG Yunning, YE Zhou, LI Chun

PDF(2509 KB)
Journal of Chinese Society of Power Engineering ›› 2016, Vol. 36 ›› Issue (9) : 739-745.

Wind Turbine Aerodynamic Performance Optimization by Individual Pitch Control Based on Trailing Edge Separation Model

  • ZHANG Yunning1, YE Zhou1,2, LI Chun1,2
Author information +
History +

Abstract

To simulate the unsteady aerodynamic performance of a wind turbine with NREL phase VI test blade, a three-dimensional trailing edge separation prediction model was established by coupling the Kirchhoff-Helmholz trailing edge separation prediction model with 3D Du-Selig stall delay model, in consideration of the three-dimensional rotational effect and trailing edge separation phenomenon, while the influence of vortex lattice number on the calculation accuracy was analyzed using lifting surface free vortex wake method. Based on the tangential distribution of separation factor, the wind turbine aerodynamic performance was then optimized by introducing a sin wave pitch increment in half period of rotation through individual pitch control to offset the increase of attack angle resulted by the change of relative inflow velocity. Results show that when the three-dimensional trailing edge separation prediction model with two vortex lattices on the lifting surface is adopted, optimum simulation results of normal and tangential force coefficient would be obtained. In each period of rotation, the trailing edge separation factor is relatively higher between 180° and 360°, which reaches the maximum at 270°. The trailing edge separation factor is reduced by individual pitch control, and the reducing magnitude increases with the rise of pitch angle; both the shaft and flap wise torque would achieve the optimum optimization effect when the pitch angle is set at 5°.

Key words

horizontal axis wind turbine / free vortex wake method / trailing edge separation / stall delay / individual pitch control

Cite this article

Download Citations
ZHANG Yunning, YE Zhou, LI Chun. Wind Turbine Aerodynamic Performance Optimization by Individual Pitch Control Based on Trailing Edge Separation Model. Journal of Chinese Society of Power Engineering. 2016, 36(9): 739-745

References

[1] 李春,叶舟,高伟,等. 现代大型风力机设计原理[M]. 上海:上海科学技术出版社,2013.
[2] 郭强,刘鹏寅,竺晓程. 风力机非定常气动力降阶模型[J]. 动力工程学报,2015, 35(7):588-592.GUO Qiang, LIU Pengyin, ZHU Xiaocheng. Reduced-order models for unsteady aerodynamic load of wind turbines[J]. Journal of Chinese Society of Power Engineering, 2015, 35(7):588-592.
[3] 杨阳,李春,缪维跑,等. 基于多目标遗传算法的风力机叶片全局优化设计[J]. 机械工程学报,2015, 51(6):45-51.YANG Yang, LI Chun, MIAO Weipao, et al. Global optimal design of wind turbines blade based on multi-object genetic algorithm[J]. Journal of Mechanical Engineering, 2015, 51(6):45-51.
[4] 唐迪,陆志良,郭同庆. 大型风力机整机气动弹性响应计算[J]. 振动工程学报,2015, 28(1):38-43.TANG Di, LU Zhiliang, GUO Tongqing. Aeroelastic simulations of a large horizontal-axis wind turbine[J]. Journal of Vibration Engineering, 2015, 28(1):38-43.
[5] KOMNINOS K. Modeling considerations of the optimum rotor using vortex method[D]. Denmark:Technical University of Denmark, 2008.
[6] REUVEN S. Design and optimization of planar and nonplanar wind turbine blades using vortex methods[D]. Denmark:Technical University of Denmark, 2010.
[7] GLAUERT H. An aerodynamic theory of the airscrew[M]. England:Cambridge University Press, 1922:199-220.
[8] 沈昕. 水平轴风力机气动性能预测及优化设计[D]. 上海:上海交通大学, 2014.
[9] 李少华,王东华,岳巍澎,等. 双风力机风向变化时尾流及阵列数值研究[J]. 动力工程学报,2011, 31(10):768-772.LI Shaohua, WANG Donghua, YUE Weipeng, et al. Numerical simulation on wake interaction and array of double wind turbine at varying wind directions[J]. Journal of Chinese Society of Power Engineering, 2011, 31(10):768-772.
[10] 杜朝辉. 水平轴风力涡轮设计与性能预估方法的三维失速延迟模型——Ⅲ. 模型改进[J]. 太阳能学报, 2000, 21(2):145-150.DU Zhaohui. A 3-D stall-delay model for HWAT performance prediction:Ⅲ. mode improvement[J]. Acta Energiae Solaris Sinica, 2000, 21(2):145-150.
[11] LEISHMAN J G, BEDDOES T S. A generalised model for airfoil unsteady aerodynamic behaviour and dynamic stall using the indicial method[C]//Proceedings of the 42nd annual forum of the American Helicopter Society. Washington DC, USA:American Helicopter Society, 1986:243-265.
[12] 许波峰,王同光,张震宇. 风力机三维旋转效应模型研究[J]. 太阳能学报,2014, 35(4):562-567.XU Bofeng, WANG Tongguang, ZHANG Zhenyu. Investigation on three dimensional rotational effect model for wind turbine[J]. Acta Energiae Solaris Sinica, 2014, 35(4):562-567.
[13] SIMMS D A, FINGERSH L J, JAGER D W, et al. Unsteady aerodynamics experiment phase VI:wind tunnel test configurations and available data campaigns[M]. Colorado,USA:National Renewable Energy Laboratory, 2001.
[14] SHENG W, GALBRAITH R A M D, COTON F N. On the S809 airfoil's unsteady aerodynamic characteristics[J]. Wind Energy, 2009, 12(8):752-767.
[15] SANT T, van KUIK G, van BUSSEL G J W. Estimating the angle of attack from blade pressure measurements on the NREL phase VI rotor using a free wake vortex model:axial conditions[J]. Wind Energy, 2006, 9(6):549-577.
PDF(2509 KB)

Accesses

Citation

Detail

Sections
Recommended

/