Application of Wind Speed Self-similarity and Fractal Dimension in Wind Field Analysis

LI Qianqian, LI Chun, YANG Yang

PDF(883 KB)
Journal of Chinese Society of Power Engineering ›› 2016, Vol. 36 ›› Issue (11) : 914-919.

Application of Wind Speed Self-similarity and Fractal Dimension in Wind Field Analysis

  • LI Qianqian1, LI Chun1,2, YANG Yang1
Author information +
History +

Abstract

The fractal theory was applied to turbulent wind field analysis by studying the self-similarity and fractal dimension of the wind speed time sequence, so as to overcome the blindness in selecting the turbulent wind spectrum model from the following two aspects:the local-global relations and the fractal dimension of the wind speed time sequence. Taking the wind speed time sequence of a wind field as the sample data, different wind speed time sequence curves were obtained respectively with Kaimal, Von Karman, SMOOTH and NWTCUP turbulent wind spectrum model, and its self-similarity was then verified with Hurst exponents while the fractal dimension was calculated using box counting method. Results show that different turbulent wind spectrum models have different fractal dimensions, which can be described in a quantitative way; the internal fluctuation of wind speed time sequence is not random, but a long-term correlated process with self-similarity; the fractal dimension is related to the reference wind speed.

Key words

fractal dimension / turbulent wind spectrum model / wind field / box counting method / self-similarity

Cite this article

Download Citations
LI Qianqian, LI Chun, YANG Yang. Application of Wind Speed Self-similarity and Fractal Dimension in Wind Field Analysis. Journal of Chinese Society of Power Engineering. 2016, 36(11): 914-919

References

[1] 李秋胜,李永贵,陈伏彬,等.超高层建筑的风荷载及风能发电应用研究[J]. 土木工程学报,2011,44(7):29-36. LI Qiusheng, LI Yonggui, CHEN Fubin, et al. Wind load on a super tall building and feasibility study of wind power generation[J].China Civil Engineering Journal,2011,44(7):29-36.
[2] 李晔.国外大型风力机技术的新进展[J]. 应用数学和力学,2013,34(10):1003-1011. LI Ye. Status of large scale wind turbine technology development abroad[J].Applied Mathermatics and Mechanics,2013,34(10):1003-1011.
[3] 陈严, 张锦源, 王楠, 等. 风力机风场模型的研究及紊流风场的MATLAB数值模拟[J]. 太阳能学报, 2006, 27(9):955-960. CHEN Yan, ZHANG Jinyuan, WANG Nan, et al. Wind turbine wind field models study and numerical simulation of turbulence wind field with MATLAB[J].Acta Energiae Solaris Sinica, 2006, 27(9):955-960.
[4] KARINIOTAKIS G, NOGARET E, STAVRAKA-KIS G. Advanced short-term forecasting of wind power production[C]//EWEC'97 European Wind Energy Conference. Dublin, Ireland:Irish Wind Energy Association, 1997:751-754.
[5] BILGILI M, SAHIN B, YASAR A. Application of artificial neural networks for the wind speed prediction of target station using reference stations data[J].Renewable Energy, 2007, 32(14):2350-2360.
[6] 黄鹏, 施宗城, 陈伟, 等. 大气边界层风场模拟及测试技术的研究[J]. 同济大学学报, 2001, 29(1):40-44. HUANG Peng, SHI Zongcheng, CHEN Wei, et al. Simulation method and measuring technology of atmospheric boundary layer[J].Journal of Tongji University, 2001, 29(1):40-44.
[7] BURTON T, SHARPE D, JENKINS N, et al. Wind energy:handbook[M]. Chichester, New York:Wiley, 2001.
[8] 祝贺, 徐建源. 基于多点卡曼谱输入的输电塔脉动风数值模拟[J]. 华东电力, 2008, 36(9):18-21. ZHU He, XU Jianyuan. Fluctuating wind numerical simulations for transmission tower based on Kaimal spectrum importation[J].East China Electric Power, 2008, 36(9):18-21.
[9] 高静, 洪冠新, 梁灶清. Von Karman模型三维大气紊流仿真理论与方法[J]. 北京航空航天大学学报, 2012, 38(6):736-740. GAO Jing, HONG Guanxin, LIANG Zaoqing. Theory and method of numerical simulation for 3D atmospheric turbulence field based on Von Karman model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(6):736-740.
[10] CHANG T P, KO H H, LIU F J, et al. Fractal dimension of wind speed time series[J]. Applied Energy, 2012, 93(5):742-749.
[11] 邱玉珺, 邹学勇. 反映近地面状况的一个参数——风场分维数[J]. 北京师范大学学报(自然科学版), 2006, 42(1):98-101. QIU Yujun, ZOU Xueyong. A parameter to reflect subaerial state-wind field fractal dimension[J]. Journal of Beijing Normal University (Natural Science), 2006, 42(1):98-101.
[12] 孙斌, 姚海涛. 风电场风速时间序列的多重分形去趋势波动分析[J]. 电工技术学报, 2014, 29(6):204-210. SUN Bin, YAO Haitao. Multi-fractal detrended fluctuation analysis of wind speed time series in wind farm[J]. Transactions of China Electrotechnical Society, 2014, 29(6):204-210.
[13] International Electrotechnical Commission. IEC 61400-1 Wind turbines-part 1:design requirements[S]. 3rd ed. Geneva, Switzerland:International Electrotechnical Commission, 2005.
[14] OLESEN H R, LARSEN S E, HØJSTRUP J. Modelling velocity spectra in the lower part of the planetary boundary layer[J]. Boundary-Layer Meteorology, 1984, 29(3):285-312.
[15] MONIN A S, OBUKHOV A M. Basic laws of turbulent mixing in the surface layer of the atmosphere[J]. Tr. Akad Nauk SSSR Geophiz Inst, 1954, 24(151):163-187.
[16] HØJSTRUP J. Velocity spectra in the unstable planetary boundary layer[J]. Journal of the Atmospheric Sciences, 1982, 39(10):2239-2248.
[17] KELLEY N, HAND M, LARWOOD S, et al. The NREL large-scale turbine inflow and response experiment:preliminary results[C]//ASME 2002 Wind Energy Symposium. Reno, Nevada, USA:American Society of Mechanical Engineers, 2002:412-426.
[18] HARROUNI S, GUESSOUM A. Using fractal dimension to quantify long-range persistence in global solar radiation[J]. Chaos, Solitons & Fractals, 2009, 41(3):1520-1530.
PDF(883 KB)

736

Accesses

0

Citation

Detail

Sections
Recommended

/