针对微型燃气轮机板翅式换热器结构参数与燃气轮机性能之间的耦合关系,建立了板翅式换热器多目标分析和优化模型。在此基础上,分析了2种设计条件(定燃烧室吸热量和定涡轮出功)下板翅式换热器关键参数对板翅式换热器和燃气轮机性能的影响。结果表明:影响燃烧室吸热量和涡轮出功的主要因素为换热器压损而并非换热器效能,2种设计条件下各参数的变化趋势一致(除燃烧室吸热量和涡轮出功外);在对翅片结构进行优化后,涡轮出功增大了6.8%,燃烧室吸热量减少了5.1%;相对于基本参数,优化后翅片厚度、翅片间距和波纹角减小,翅片高度增加,保证了板翅式换热器具有较小的压损;采用耗散最小和采用熵产最小为优化目标时无明显区别。
Abstract
A multi-objective analysis and optimization model was established for the plate-fin heat exchanger in a micro gas turbine, based on the coupling relationship between the structural parameters of the heat exchanger and the performance of the gas turbine. On that basis, the effects of key exchanger parameters on the performance of both the heat exchanger itself and the gas turbine were analyzed under two operating conditions (constant heat absorption in the combustion chamber and constant power output of the gas turbine). Results show that the main factor influencing the power output and heat absorption is the pressure loss but not the effectiveness of the heat exchanger. The variation trend of all parameters in above two operating modes keeps consistent (except for the heat absorption and power output). After optimization of the fin structure, the turbine power output is increased by 6.8%, and the heat absorption of combustion chamber is decreased by 5.1%. Compared with the original parameters, the optimized fin thickness, fin spacing and corrugation angle decrease, while the fin height increases, thus ensuring a small pressure loss of the heat exchanger. At the same time, it is found that there is no significant difference in the results when minimum entransy dissipation and minimum entropy production are taken as the optimization objectives.
关键词
微型燃气轮机 /
板翅式换热器 /
结构优化 /
熵产 /
耗散
{{custom_keyword}} /
Key words
micro gas turbine /
plate-fin heat exchanger /
structure optimization /
entropy generation /
entransy dissipation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 翁一武, 苏明, 翁史烈. 先进微型燃气轮机的特点与应用前景[J]. 热能动力工程, 2003, 18(2):111-116. WENG Yiwu, SU Ming, WENG Shilie. Specific features of advanced micro gas turbines and their application prospects[J]. Journal of Engineering for Thermal Energy and Power, 2003, 18(2):111-116.
[2] 漆鸣, 徐国强. 微型燃气轮机回热器的结构参数对其性能影响的计算分析[J]. 燃气涡轮试验与研究, 2009, 22(2):26-29. QI Ming, XU Guoqiang. Structure optimization for micro-turbine recuperator[J]. Gas Turbine Experiment and Research, 2009, 22(2):26-29.
[3] ISMAIL L S, VELRAJ R, RANGANAYAKULU C. Studies on pumping power in terms of pressure drop and heat transfer characteristics of compact plate-fin heat exchangers-a review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1):478-485.
[4] 刘哲昊. 微型燃气轮机改进回热方案总体性能仿真研究[D]. 哈尔滨:哈尔滨工程大学, 2012.
[5] XIAO Gang, YANG Tianfeng, LIU Huanlei, et al. Recuperators for micro gas turbines:a review[J]. Applied Energy, 2017, 197:83-99.
[6] 代中元. 基于FLUENT的某型号板翅式换热器的性能数值模拟及其结构优化[D]. 武汉:武汉理工大学, 2013.
[7] 杨志. 空分用板翅式换热器波纹翅片传热与阻力性能理论与实验研究[D]. 杭州:浙江工业大学, 2013.
[8] 谢公南, 王秋旺. 遗传算法在板翅式换热器尺寸优化中的应用[J]. 中国电机工程学报, 2006, 26(7):53-57. XIE Gongnan, WANG Qiuwang. Geometrical optimization design of plate-fin heat exchanger using genetic algorithm[J]. Proceedings of the CSEE, 2006, 26(7):53-57.
[9] WANG Zhe, LI Yanzhong. Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm[J]. Energy Conversion and Management, 2015, 101:126-135.
[10] RAJA B D, JHALA R L, PATEL V. Many-objective optimization of cross-flow plate-fin heat exchanger[J]. International Journal of Thermal Sciences, 2017, 118:320-339.
[11] 吴双应, 李友荣. 余热回收换热器性能的经济分析与优化[J]. 冶金能源, 1996, 15(6):44-47. WU Shuangying, LI Yourong. Exergy-economic analysis and optimization of waste heat recovery exchanger performance[J]. Energy for Metallurgical Industry, 1996, 15(6):44-47.
[12] KAYS W M, LONDON A L. Compact heat exchangers[M]. 3rd ed. New York,USA:McGraw-Hill, 1984.
[13] 郭江峰, 许明田, 程林. 基于耗散数最小的板翅式换热器优化设计[J]. 工程热物理学报, 2011, 32(5):827-831. GUO Jiangfeng, XU Mingtian, CHENG Lin. Optimization design of plate-fin heat exchanger based on entransy dissipation number minimization[J]. Journal of Engineering Thermophysics, 2011, 32(5):827-831.
[14] MISHRA M, DAS P K, SARANGI S. Second law based optimisation of crossflow plate-fin heat exchanger design using genetic algorithm[J]. Applied Thermal Engineering, 2009, 29(14/15):2983-2989.
[15] 张芸豫. 换热器综合性能的优化设计方法研究[D]. 兰州:兰州理工大学, 2009.
[16] 徐之平, 卢玫, 李凌, 等. 微型燃气轮机回热器[J]. 动力工程, 2003, 23(6):2752-2760. XU Zhiping, LU Mei, LI Ling, et al. Microturbine recuperators[J]. Power Engineering, 2003, 23(6):2752-2760.
[17] ISMAIL L S, VELRAJ R. Studies on fanning friction (f) and colburn (j) factors of offset and wavy fins compact plate fin heat exchanger-a CFD approach[J]. Numerical Heat Transfer, Part A:Applications, 2009, 56(12):987-1005.
[18] KUPPAN T. 换热器设计手册[M]. 钱颂文, 廖景娱, 译. 北京:中国石化出版社, 2004.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}