纳米颗粒及其接触角对沸腾传热系数的影响

刘藏丹, 王东民, 全晓军, 郑平

PDF(1320 KB)
动力工程学报 ›› 2018, Vol. 38 ›› Issue (7) : 572-577.
工程热物理

纳米颗粒及其接触角对沸腾传热系数的影响

  • 刘藏丹, 王东民, 全晓军, 郑平
作者信息 +

Effects of Contact Angles of Nanoparticles on the Boiling Heat Transfer Coefficients

  • LIU Cangdan, WANG Dongmin, QUAN Xiaojun, ZHENG Ping
Author information +
History +

摘要

选取具有不同接触角的SiO2纳米流体进行沸腾实验,探究纳米颗粒接触角对沸腾传热系数的影响。通过观察沸腾过程中气泡大小及沸腾实验后加热面上的沉积层形态,分析纳米颗粒接触角对沸腾气泡和沉积层形态的影响,进而揭示了纳米颗粒表面的润湿性对沸腾传热系数的影响机理。结果表明:纳米颗粒的接触角会影响纳米流体沸腾时气泡的稳定性和加热面上纳米沉积层的形态,不同表面形态具有不同的换热效果;中等亲水的纳米颗粒能吸附在气泡的气液界面上,使沸腾传热系数增大;加热面上沉积的中等亲水纳米颗粒会增大加热面粗糙度,产生更多的汽化核心,使沸腾传热系数增大。

Abstract

To study the effects of contact angles of various nanoparticles on the boiling heat transfer coefficients, a boiling experiment was conducted using SiO2 nanofluids with different contact angles. By observing the sizes of the bubbles formed during boiling process and the morphology of the layers deposited on heated surface after boiling experiment, the effects of nanoparticles and their contact angles on the sizes of boiling bubbles and the morphology of deposited layers were studied, thus to further reveal the influence mechanism of the wettability of nanoparticles on the boiling heat transfer coefficients. Results show that the contact angles of nanoparticles would affect the stability of the bubbles formed in boiling process and the morphology of the layers deposited on heated surface, and different surface morphologies present different heat transfer effectiveness. Medium hydrophilic nanoparticles can be adsorbed on the gas-liquid interface of bubbles, producing enhanced heat transfer coefficients; whereas the medium hydrophilic nanoparticles deposited on the heated surface may increase the surface roughness, when more nucleation sites would be produced, resulting in improved heat transfer coefficients.

关键词

SiO2纳米颗粒 / 沸腾 / 接触角 / 沉积 / 气泡稳定性

Key words

SiO2 nanofluid / boiling / contact angle / nanoparticle deposition / bubble stability

引用本文

导出引用
刘藏丹, 王东民, 全晓军, 郑平. 纳米颗粒及其接触角对沸腾传热系数的影响. 动力工程学报. 2018, 38(7): 572-577
LIU Cangdan, WANG Dongmin, QUAN Xiaojun, ZHENG Ping. Effects of Contact Angles of Nanoparticles on the Boiling Heat Transfer Coefficients. Journal of Chinese Society of Power Engineering. 2018, 38(7): 572-577

参考文献

[1] 吴信宇, 吴慧英, 屈健, 等. 纳米流体在芯片微通道中的流动与换热特性[J]. 化工学报, 2008, 59(9):2181-2187. WU Xinyu, WU Huiying, QU Jian, et al. Flow and heat transfer characteristics of nanofluids in silicon chip microchannels[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(9):2181-2187.
[2] 李强, 宣益民. 纳米流体对流换热的实验研究[J]. 工程热物理学报, 2002, 23(6):721-723. LI Qiang, XUAN Yimin. Experimental investigation on convective heat transfer of nanofluids[J]. Journal of Engineering Thermophysics, 2002, 23(6):721-723.
[3] 徐志明, 董兵, 杜祥云, 等. 板式换热器颗粒污垢特性的实验研究[J]. 动力工程学报, 2013, 33(7):539-543. XU Zhiming, DONG Bing, DU Xiangyun, et al. Experimental study on particle fouling in plate heat exchangers[J]. Journal of Chinese Society of Power Engineering, 2013, 33(7):539-543.
[4] 洪欢喜, 武卫东, 盛伟, 等. 纳米流体制备的研究进展[J]. 化工进展, 2008, 27(12):1923-1928. HONG Huanxi, WU Weidong, SHENG Wei, et al. Research progress of preparation of nanofluids[J]. Chemical Industry and Engineering Progress, 2008, 27(12):1923-1928.
[5] 陈威, 黎源源, 林俊. 凹槽微通道铜-水纳米流体传热与流动分析[J]. 中国机械工程, 2014, 25(17):2277-2282. CHEN Wei, LI Yuanyuan, LIN Jun. Flow and heat transfer of Cu-water nanofluids in grooved microchannels[J]. China Mechanical Engineering, 2014, 25(17):2277-2282.
[6] 强爱红, 许春建, 周明. 纳米流体对流传热的研究进展[J]. 化学工程, 2007, 35(11):74-78. QIANG Aihong, XU Chunjian, ZHOU Ming. Progress in research on convective heat transfer of nanofluids[J]. Chemical Engineering (China), 2007, 35(11):74-78.
[7] 凌智勇, 邹涛, 丁建宁, 等. 纳米流体黏度特性[J]. 化工学报, 2012, 63(5):1409-1414. LING Zhiyong, ZOU Tao, DING Jianning, et al. Shear viscosity of nanofluids mixture[J]. CIESC Journal, 2012, 63(5):1409-1414.
[8] XUAN Yimin, LI Qiang. Heat transfer enhancement of nanofluids[J]. International Journal of Heat and Fluid Flow, 2000, 21(1):58-64.
[9] COULIBALY A, BI Jingliang, LIN Xipeng, et al. Effect of bubble coalescence on the wall heat transfer during subcooled pool boiling[J]. International Journal of Thermal Sciences, 2014, 76:101-109.
[10] BINKS B P, HOROZOV T S. Aqueous foams stabilized solely by silica nanoparticles[J]. Angewandte Chemie, 2005, 44(24):3788-3791.
[11] STÖBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26(1):62-69.
[12] 费天庠, 武卫东, 于子淼, 等. 纳米流体强化气液传质的研究进展[J]. 化工新型材料, 2013, 41(12):4-6, 18. FEI Tianyang, WU Weidong, YU Zimiao, et al. Research progress on gas-liquid mass transfer enhancement of nanofluids[J]. New Chemical Materials, 2013, 41(12):4-6, 18.
[13] YU Wei, XIE Huaqing. A review on nanofluids:preparation, stability mechanisms, and applications[J]. Journal of Nanomaterials, 2012, 2012:1-17.
[14] MAESTRO A, GUZMÁN E, ORTEGA F, et al. Contact angle of micro-and nanoparticles at fluid interfaces[J]. Current Opinion in Colloid & Interface Science, 2014, 19(4):355-367.
[15] ZEVI Y, GAO Bin, ZHANG Wei, et al. Colloid retention at the meniscus-wall contact line in an open microchannel[J]. Water Research, 2012, 46(2):295-306.
[16] ZEVI Y, DATHE A, MCCARTHY J F, et al. Distribution of colloid particles onto interfaces in partially saturated sand[J]. Environmental Science & Technology, 2005, 39(18):7055-7064.
[17] MORAILA-MARTÍNEZ C L, CABRERIZO-VÍLCHEZ M A, RODRÍGUEZ-VALVERDE M A. The role of the electrostatic double layer interactions in the formation of nanoparticle ring-like deposits at driven receding contact lines[J]. Soft Matter, 2013, 9(5):1664-1673.
[18] OGIHARA H, XIE Jing, OKAGAKI J, et al. Simple method for preparing superhydrophobic paper:spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency[J]. Langmuir, 2012, 28(10):4605-4608.
[19] 王伟. 不同表面粗糙结构沸腾换热特性的实验研究[D]. 上海:上海交通大学, 2014.

基金

国家自然科学基金资助项目(51676123)
PDF(1320 KB)

Accesses

Citation

Detail

段落导航
相关文章

/