空冷岛对底层大气边界层特性的影响

吴正人, 路婷婷, 王松岭, 靳超然

PDF(1048 KB)
动力工程学报 ›› 2018, Vol. 38 ›› Issue (1) : 62-68.
系统工程

空冷岛对底层大气边界层特性的影响

  • 吴正人, 路婷婷, 王松岭, 靳超然
作者信息 +

Effects of Air Cooling Island on the Characteristics of Bottom Boundary Layer

  • WU Zhengren, LU Tingting, WANG Songling, JIN Chaoran
Author information +
History +

摘要

利用Gambit软件建立空冷岛模型,通过UDF加载大气边界层函数,并针对不同温度层结设置不同的温度分布函数,利用Fluent软件模拟并分析空冷岛对局地环境的影响,得到空冷岛周围区域不同高度处的风速和温度值,结合风切变理论和Monin-Obukhov相似理论计算空冷岛周围动量通量和热量通量的变化.结果表明:随着风速的增大,风切变指数会略微增大,且沿流向逐渐减小;空冷岛对动量通量和热量通量的影响沿流向逐渐减小,且稳定层结下的影响小于不稳定层结下的影响,即使在稳定层结下,空冷岛周围动量通量和热量通量的变化程度亦均大于其他区域动量通量和热量通量的变化程度.

Abstract

A model of air cooling island was established with Gambit software by numerical method, with which, the effects of air cooling island on the local environment were analyzed using Fluent software by loading atmospheric boundary layer function through UDF and setting temperature distribution function for different temperature stratifications, so as to obtain the wind velocity and temperature at different heights in the area around the air cooling island, and to study the change trend of momentum flux and heat flux based on wind shear theory and Monin-Obukhov similarity theory. Results show that with the rise of wind velocity, the wind shear increases slightly, which reduces gradually along the flow direction. The influence of air cooling island on the momentum flux and heat flux reduces along the flow direction, while the influence on stable stratification is less than that on unstable stratification, and the influence degree on stable stratification is higher than on any other places except for the unstable stratification.

关键词

空冷岛 / 大气边界层 / 风切变 / 湍流通量

Key words

air cooling island / atmospheric boundary layer / wind shear / turbulent flux

引用本文

导出引用
吴正人, 路婷婷, 王松岭, 靳超然. 空冷岛对底层大气边界层特性的影响. 动力工程学报. 2018, 38(1): 62-68
WU Zhengren, LU Tingting, WANG Songling, JIN Chaoran. Effects of Air Cooling Island on the Characteristics of Bottom Boundary Layer. Journal of Chinese Society of Power Engineering. 2018, 38(1): 62-68

参考文献

[1] 周兰欣, 李建波, 李卫华, 等. 直接空冷机组凝汽器加装下挡风墙的数值模拟[J]. 动力工程, 2008, 28(5):744-747, 763. ZHOU Lanxin, LI Jianbo, LI Weihua, et al. Numerical simulation of direct air cooling units' condenser added lower windbreak[J]. Journal of Power Engineering, 2008, 28(5):744-747, 763.
[2] 周兰欣, 崔皓程, 魏春枝. 空冷平台间距对空冷凝汽器换热效率的影响[J]. 动力工程, 2009, 29(8):765-768,776. ZHOU Lanxin, CUI Haocheng, WEI Chunzhi. Effects of platform pitch on heat exchange efficiency of air-cooled condenser[J]. Journal of Power Engineering, 2009, 29(8):765-768, 776.
[3] 杨立军, 张凯峰, 杜小泽, 等. 空冷凝汽器椭圆翅片椭圆管束外空气的流动与传热特性[J]. 动力工程, 2008, 28(6):911-914, 923. YANG Lijun, ZHANG Kaifeng, DU Xiaoze, et al. Flow and heat transfer characteristics of cooling air outside elliptical tube bundles fixed with elliptical fin in air-cooled condenser[J]. Journal of Power Engineering, 2008, 28(6):911-914, 923.
[4] 赵松年, 于允贤. 湍流问题十讲——理解和研究湍流的基础[M]. 北京:科学出版社, 2016.
[5] 王新平, 王琳琳, 高志球, 等. 夏季北京城市大气边界层湍流通量的塔层观测[J]. 气候与环境研究, 2008, 13(5):629-638. WANG Xinping, WANG Linlin, GAO Zhiqiu, et al. Measurements of atmospheric boundary layer over Beijing area in summer[J]. Climatic and Environmental Research, 2008, 13(5):629-638.
[6] 何文, 刘辉志, 冯健武. 城市近地层湍流通量及CO2通量变化特征[J]. 气候与环境研究, 2010, 15(1):21-33. HE Wen, LIU Huizhi, FENG Jianwu. Characteristics of turbulent fluxes and carbon dioxide flux over urban surface layer[J]. Climatic and Environmental Research, 2010, 15(1):21-33.
[7] 徐祥德, 王寅钧, 赵天良, 等. 高原东南缘大气近地层湍能特征与边界层动力、热力结构相关特征[J]. 气象, 2014, 40(10):1165-1173. XU Xiangde, WANG Yinjun, ZHAO Tianliang, et al. Relationship between turbulent energy in the near-surface layer and atmospheric boundary layer thermodynamic structure over the southeastern side of Tibetan Plateau[J]. Meteorological Monthly, 2014, 40(10):1165-1173.
[8] 黄倩, 王蓉, 田文寿, 等. 风切变对边界层对流影响的大涡模拟研究[J]. 气象学报, 2014, 72(1):100-115. HUANG Qian, WANG Rong, TIAN Wenshou, et al. Study of the impacts of wind shear on boundary layer convection based on the large eddy simulation[J]. Acta Meteorologica Sinica, 2014, 72(1):100-115.
[9] LU Hao, FERNANDO P A. Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer[J]. Physics of Fluids, 2011, 23(6):1-20.
[10] LU Hao, FERNANDO P A. On the impact of wind farms on a convective atmospheric boundary layer[J]. Boundary-Layer Meteorology, 2015, 157(1):81-96.
[11] RAJEWSKI D A, TAKLE E S, LUNDQUIST J K, et al. Changes in fluxes of heat, H2O, and CO2, caused by a large wind farm[J]. Agricultural and Forest Meteorology, 2014, 194:175-187.
[12] 王学佳, 杨梅学, 万国宁. 近60年青藏高原地区地面感热通量的时空演变特征[J]. 高原气象, 2013, 32(6):1557-1567. WANG Xuejia, YANG Meixue, WAN Guoning. Temporal-spatial distribution and evolution of surface sensible heat flux over Qinghai-Xizang Plateau during last 60 years[J]. Plateau Meteorology, 2013, 32(6):1557-1567.
[13] van ROOYEN J A, KRÖGER D G. Performance trends of an air-cooled steam condenser under windy conditions[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(2):023006.
[14] 顾志福, 陈学锐, 李燕, 等. 大型电厂直冷系统风效应风洞模拟[J]. 力学学报, 2005, 37(5):558-563. GU Zhifu, CHEN Xuerui, LI Yan, et al. Wind tunnel simulation on wind effects on air-cooled condensers of a large power plant[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(5):558-563.
[15] 武文涛. 城市区域热环境及建筑排热影响的模拟及评价[D]. 哈尔滨:哈尔滨工业大学, 2008.
[16] 李磊, 张立杰, 张宁, 等. FLUENT在复杂地形风场精细模拟中的应用研究[J]. 高原气象, 2010, 29(3):621-628. LI Lei, ZHANG Lijie, ZHANG Ning, et al. Application of FLUENT on the fine-scale simulation of the wind field over complex terrain[J]. Plateau Meteorology, 2010, 29(3):621-628.
[17] VERMA S B, ROSENBERG N J, BLAD B L. Turbulent exchange coefficients for sensible heat and water vapor under advective conditions[J]. Journal of Applied Meteorology, 1978, 17(3):330-338.
[18] PRUITT W O, MORGAN D L, LOURENCE F J. Momentum and mass transfers in the surface boundary layer[J]. Quarterly Journal of the Royal Meteorological Society, 1973, 99(420):370-386.
[19] 徐华英, 吉武胜, 黄美元. 风切变对积云发展影响的数值模拟研究[J]. 大气科学, 1988, 12(4):405-411. XU Huaying, JI Wusheng, HUANG Meiyuan. Numerical simulation of the effects of vertical wind shear on the development of cumulus clouds[J]. Scientia Atmospherica Sinica, 1988, 12(4):405-411.

基金

中央高校基本科研业务费专项资金资助项目(2015MS114)
PDF(1048 KB)

621

Accesses

0

Citation

Detail

段落导航
相关文章

/