为研究适应不同风况下的尾缘襟翼最优结构参数,以NREL 5 MW风力机为参考对象,对FAST进行二次开发,在Matlab/Simulink上搭建了带尾缘襟翼的风力机气动弹性伺服仿真平台;以11.4 m/s稳定风为例,综合考虑尾缘襟翼位置、长度、占弦比及摆角范围对风力机载荷抑制及功率捕获的影响,提出了基于正交设计的大型智能风力机尾缘襟翼的参数优化方法,得到一组最优的尾缘襟翼结构参数;研究了标准湍流风况下尾缘襟翼控制对风力机动态性能的影响.结果表明:尾缘襟翼不仅可显著降低叶片的疲劳载荷、减少变桨机构动作,还可有效抑制风力机输出功率的波动.
Abstract
To find the optimal structure parameters of trailing edge flaps (TEF) under different wind conditions, an aero-servo-elasticity wind turbine simulation platform was set up on Matlab/Simulink with secondarily developed FAST by taking the NREL 5 MW reference wind turbine as an object of study. Under 11.4 m/s steady wind condition, considering the effects of position, length, chord length ratio and angle range of TEF on load suppression and power capture of the wind turbine, an optimization scheme of TEF parameters was introduced based on orthogonal design method, and a group of optimal parameters were thus obtained. Moreover, the effects of TEF control on wind turbine dynamic properties were explored under standard turbulent wind condition. Results show that the TEF can not only significantly alleviate the fatigue load and reduce the action of pitch mechanism, but also effectively weaken the fluctuation of wind turbine power output.
关键词
大型水平轴风力机 /
尾缘襟翼 /
正交设计 /
载荷抑制 /
风力发电控制
{{custom_keyword}} /
Key words
large-scale horizontal axis wind turbine /
trailing edge flap /
orthogonal design /
load suppression /
wind power control
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SIEMENS A G. Siemens wind turbine SWT-7.0-154 technical specifications[EB/OL]. (2016)[2016-11-01]. http://www.siemens.com/content/dam/internet/siemens-com/global/market-specific-solutions/wind/data_sheets/data-sheet-wind-turbine-swt-7.0-154.pdf.
[2] BARLAS T K, VAN KUIK G A M. Review of state of the art in smart rotor control research for wind turbines[J].Progress in Aerospace Sciences, 2010, 46(1):1-27.
[3] BARLAS T K, VAN KUI G A M. State of the art and prospectives of smart rotor control for wind turbines[J].Journal of Physics:Conference Series, 2007, 75(1):1-20.
[4] COUCHMAN I, CASTAIGNET D, POULSEN N K, et al. Active load reduction by means of trailing edge flaps on a wind turbine blade[C]//2014 American Control Conference. Portland, USA:IEEE, 2014.
[5] CASTAIGNET D, BARLAS T, BUHL T, et al. Full-scale test of trailing edge flaps on a vestas V27 wind turbine:active load reduction and system identification[J].Wind Energy, 2014, 17(4):549-564.
[6] BERG J C, RESOR B R, PAQUETTE J A, et al. Smart wind turbine rotor:design and field test[R]. Albuquerque, USA:Sandia National Laboratories, 2014.
[7] BERG J C, BARONE M F, YODER N C. Smart wind turbine rotor:data analysis and conclusions[R]. Albuquerque, USA:Sandia National Laboratories, 2014.
[8] 郝文星, 叶舟, 丁勤卫, 等. 柔性襟翼对风力机翼型气动性能的影响[J]. 动力工程学报, 2016, 36(6):473-479. HAO Wenxing, YE Zhou, DING Qinwei, et al. Influence of deformable trailing edge flap on aerodynamic performance of the wind turbine airfoil[J].Journal of Chinese Society Power Engineering, 2016, 36(6):473-479.
[9] 祖红亚, 李春, 李润杰, 等. 襟翼相对长度对翼型气动性能的影响[J]. 动力工程学报, 2015, 35(8):666-673. ZU Hongya, LI Chun, LI Runjie, et al. Effect of relative flap length on aerodynamic performance of the airfoil[J].Journal of Chinese Society of Power Engineering, 2015, 35(8):666-673.
[10] 茆诗松, 周纪芗, 陈颖. 试验设计[M]. 2版. 北京:中国统计出版社, 2012:107-185.
[11] JONKMAN J M, BUHL J M L. FAST user's guide[R]. USA:National Renewable Energy Laboratory,2005.
[12] HANSEN M O L. Aerodynamics of wind turbines[M]. 2nd ed. Oxford, U K:Eathscan, 2008:45-62.
[13] DAVID J L, HANSEN A C. User's guide to the wind turbine aerodynamics computer software aerodyn[R]. USA:Technical Report, 2002.
[14] LEISHMAN J G, BEDDOES T S. A semi-empirical model for dynamic stall[J].Journal of the American Helicopter society, 1989, 34(3):3-17.
[15] MANJOCK A. Design codes FAST and ADAMS for load calculations of onshore wind turbines[R]. USA:National Renewable Energy Laboratory, 2005.
[16] JONKMAN B J, KILCHER L. TurbSim user's guide:version 1.06.00[R]. USA:National Renewable Energy Laboratory, 2012.
[17] DRELA M, YOUNGREN. XFOIL 6.9 user primer[EB/OL]. (2001)[2016-11-01]. http://web.mit.edu/drela/Public/web/xfoil/xfoil_doc.txt.
[18] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5 MW reference wind turbine for offshore system development[R]. USA:National Renewable Energy Laboratory, 2009.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家重点基础研究发展计划(973计划)资助项目(2012CB215203)
{{custom_fund}}