以NACA0018为基准翼型,采用Fluent数值模拟方法对比研究了襟翼相对长度(分别取0.2、0.3和0.4)和翼缝相对宽度(分别取1.0%、1.5%和2.0%)对翼型流场结构及升、阻力特性的影响,并着重分析襟翼相对长度对翼型气动性能的影响.结果表明:由于襟翼对翼型周围主涡发展和变化的影响,不仅改善了翼型的失速特性,同时也提高了翼型的气动性能;襟翼翼型的失速攻角在研究范围内均大于基准翼型;在攻角小于失速攻角时,襟翼翼型的升力系数均小于基准翼型,阻力系数均大于基准翼型,但升力系数的最大值均大于基准翼型;随着襟翼相对长度的增大,翼型失速攻角逐渐减小;当攻角接近翼型失速攻角时,升力系数先增大后减小;襟翼相对长度相同时,随着翼缝相对宽度的增大,升力系数逐渐减小.
Abstract
Taking the NCA0018 airfoil as the benchmark airfoil, the effects of relative flap length (0.2, 0.3 and 0.4) and relative slot width (1.0%, 1.5% and 2.0%) on the airfoil flow field and resistance properties were numerically studied using Fluent software, with focus on the effects of relative flap length on the airfoil areodynamic performance. Results show that the existance of flap helps to not only improve the airfoil stall characteristics, but also improve the aerodynamic performance of the airfoil, due to its impact on development and variation of the main vortex around the airfoil. For flap airfoil, the stall angle of attack within the scope of study is greater than that of the benchmark airfoil, and when the angle of attack is less than the stall angle of attack, the lift coefficient of flap airfoil will be less that of the benchmark type, and both the drag coefficient and the maximum lift coefficient will be higher than benchmark airfoil. The stall angle of attack reduces gradually with the rise of reltive flap length. When the angle of attack is close to the stall angle of attack, the lift coefficient increases first and reduces later on. For a certain length of flap, the lift coefficient reduces with the rise of relative slot width.
关键词
襟翼 /
翼型 /
翼缝 /
相对长度 /
升力系数 /
气动性能
{{custom_keyword}} /
Key words
flap /
airfoil /
slot /
relative length /
lift coefficient /
aerodynamic performance
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 叶正寅,解亚军,武洁.模型振动对翼型流场和气动性能的影响[J].工程力学,2009,26(4): 240-245.
YE Zhengyin, XIE Yajun, WU Jie. The effects of wind-tunnel model vibration on flow field and aerodynamics of an airfoil[J].Engineering Mechanics,2009, 26(4): 240-245.
[2] WU Bin, LANG Yongqiang, ZARGARI Navid. 风力发电系统的功率变换与控制[M].卫三民,译.北京:机械工业出版社,2012.
[3] HANSEN M O L.风力机空气动力学[M].肖劲松,译.北京:中国电力出版社,2009.
[4] PAGE F H. The handley page wing[J]. The Aeronautical Journal,1921:263.
[5] 徐璋,王茜,皇甫凯林,等.襟翼对垂直轴风力机性能影响的数值模拟[J].动力工程学报,2011,31(9): 715-719.
XU Zhang, WANG Qian, HUANGFU Kailin, et al. Influence of various flaps on performance of vertical axis wind turbines[J]. Journal of Chinese Society of Power Engineering,2011,31(9): 715-719.
[6] WEYL A R. High-lift devices and tailless aeroplanes[J]. Aircraft Engineering and Aerospace Technology,1945,17(10): 292-297.
[7] WEICK F E, PLATT R C. Wind-tunnel tests of the fowler variable-area wing[J]. National Advisory Committee for Aeronautics,1932,5(419):1-19.
[8] SMITH A M O. High-lift aerodynamics[J]. Journal of Aircraft, 1975, 12(6): 501-530.
[9] van DAM C P. The aerodynamic design of multi-element high-lift systems for transport airplanes[J]. Progress in Aerospace Sciences,2002,38(2): 101-144.
[10] RECKZEH D. Aerodynamic design of the high-lift-wing for a Megaliner aircraft[J]. Aerospace Science and Technology, 2003, 7(2): 107-119.
[11] XIAO Q, LIU W, INCECIK A. Flow control for VATT by fixed and oscillating flap[J]. Renewable Energy, 2013,51: 141-152.
[12] 谭广琨,申功炘,苏文翰.大迎角下两段式翼型后翼作俯仰拍动的实验研究[J].实验流体力学,2007,21(3): 1-7.
TAN Guangkun, SHEN Gongxin, SU Wenhan. Experimental investigation on the aft-element flapping of a two-element airfoil at high attack angle[J]. Journal of Experiments in Fluid Mechanics, 2007,21(3):1-7.
[13] 焦予秦,范娟莉,罗淞.多段翼型流动非定常性计算研究[J].科学技术与工程,2011,11(13): 2994-2998.
JIAO Yuqin, FAN Juanli, LUO Song. Research on calculation of flow unsteadiness of multi-element airfoils[J]. Science Technology and Engineering, 2011,11(13): 2994-2998.
[14] 李向群,安亦然,陈耀松.带副翼的翼身组合体的数值模拟[J]. 空气动力学学报,2004,22(3):337-341.
LI Xiangqun, AN Yiran, CHEN Yaosong. The computation of a wing-body combination with aileron[J]. Acta Aerodynamica Sinica, 2004,22(3):337-341.
[15] OBAYASHI S, GURUSWAMY G P. Navier-Stokes computations for oscillating control surfaces[J]. Journal of Aircraft, 1994, 31(3): 631-636.
[16] 陈泽民,李津,朱自强,等.带副翼的翼身组合体绕流的Euler和N-S方程解[J]. 计算物理,2001, 18(4): 372-376.
CHEN Zemin, LI Jin, ZHU Ziqiang, et al. Euler and N-S solutions of a wing-body combination with aileron[J]. Chinese Journal of Computational Physics, 2001,18(4): 372-376.
[17] 雷延生,周正贵.风力机振荡翼型动态失速特性的CFD研究[J]. 太阳能学报,2010,31(3): 367-372.
LEI Yansheng, ZHOU Zhenggui. CFD investigation on wind turbine oscillating airfoil dynamic stall[J]. Acta Energiae Solaris Sinica, 2010, 31(3): 367-372.
[18] VERSTEEG H K, MALALASEKERA W. An introduction to computational fluid dynamics[M].New York, USA: Wiley, 1995.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
上海市研究生创新基金资助项目(JWCXSL1302);国家自然科学基金资助项目(E51176129);上海市教育委员会科研创新(重点)资助项目(13ZZ120);上海市教育委员会科研创新项目(13YZ066);教育部高等学校博士学科点专项科研基金(博导类)资助项目(201231200110008)
{{custom_fund}}