基于径向基函数的声速法炉内测温实验研究

檀经考, 李娜, 陈乐航, 周屈兰

PDF(3413 KB)
动力工程学报 ›› 2025, Vol. 45 ›› Issue (1) : 28-36. DOI: 10.19805/j.cnki.jcspe.2025.230643
动力设备与系统

基于径向基函数的声速法炉内测温实验研究

  • 檀经考, 李娜, 陈乐航, 周屈兰
作者信息 +

Experimental Research on Furnace Temperature Measurement by Radial Basis Function Based on Acoustic Pyrometry

  • TAN Jingkao, LI Na, CHEN Lehang, ZHOU Qulan
Author information +
History +

摘要

温度测量对于电厂锅炉和其他大型工业设备的安全稳定运行至关重要。传统温度测量方法只能获得点参数,而不能获得连续参数场。声波层析成像不仅可以有效地获得温度的相对大小,而且大大降低了成本和难度,适用于炉膛内温度测量。搭建了一个简单的二维实验尺度声学测温平台,对利用声学方法重建温度场算法进行了验证。根据声速与气体介质温度的关系,在温度场重建中采用最小二乘正交三角分解(LSQR)算法,能够准确反映目标区域(ROI)的温度分布。引入径向基函数可以极大地提高LSQR算法的重建精度。结果表明:声速法重建二维温度场在实际测量中是可行的。

Abstract

Temperature measurement is essential for ensuring the safe and stable operation of power plant boilers and other large-scale industrial equipment. Traditional temperature measurement techniques are limited to acquiring point-specific parameters instead of continuous parameter fields. Acoustic tomography not only effectively captures the relative magnitude of temperature but also notably decreases cost and complexity, making it suitable for furnace temperature measurement. A straightforward two-dimensional bench-scale acoustic temperature measurement platform was constructed in the laboratory to validate temperature field reconstruction algorithms using acoustic methods. According to the relationship between sound velocity and gas medium temperature, the least square QR decomposition (LSQR) algorithm was capable of accurately representing the temperature distribution within the region of interest (ROI) when the temperature field reconstruction was performed. The incorporation of radial basis functions significantly enhanced the reconstruction accuracy of the LSQR algorithm. Results show that employing acoustic pyrometry for reconstructing a two-dimensional temperature field is viable in practical measurements.

关键词

声层析成像 / 声速法 / 重建算法 / 温度场重建 / 径向基函数

Key words

acoustic tomography / acoustic pyrometry / reconstruction algorithm / temperature field reconstruction / radial basis function

引用本文

导出引用
檀经考, 李娜, 陈乐航, 周屈兰. 基于径向基函数的声速法炉内测温实验研究. 动力工程学报. 2025, 45(1): 28-36 https://doi.org/10.19805/j.cnki.jcspe.2025.230643
TAN Jingkao, LI Na, CHEN Lehang, ZHOU Qulan. Experimental Research on Furnace Temperature Measurement by Radial Basis Function Based on Acoustic Pyrometry. Journal of Chinese Society of Power Engineering. 2025, 45(1): 28-36 https://doi.org/10.19805/j.cnki.jcspe.2025.230643

参考文献

[1] HWANG O, LEE M C, WENG Wubin, et al. Development of novel ultrasonic temperature measurement technology for combustion gas as a potential indicator of combustion instability diagnostics[J]. Applied Thermal Engineering, 2019, 159: 113905.
[2] 潘刚, 牛旭东, 潘亮, 等. 高压低混合比氢氧预燃室出口温度均匀性分析[J]. 火箭推进, 2023, 49(1): 29-35. PAN Gang, NIU Xudong, PAN Liang, et al. Analysis on outlet temperature uniformity of hydrogen/oxygen preburner with high-pressure and low-mixture-ratio[J]. Journal of Rocket Propulsion, 2023, 49(1): 29-35.
[3] ZHANG Shiping, SHEN Guoqing, AN Liansuo, et al. Online monitoring of the two-dimensional temperature field in a boiler furnace based on acoustic computed tomography[J]. Applied Thermal Engineering, 2015, 75: 958-966.
[4] KONG Qian, JIANG Genshan, LIU Yuechao, et al. 3D temperature distribution reconstruction in furnace based on acoustic tomography[J]. Mathematical Problems in Engineering, 2019, 2019(1): 1830965.
[5] LIU Zhifeng, PAN Minghui, ZHANG Aiping, et al. Thermal characteristic analysis of high-speed motorized spindle system based on thermal contact resistance and thermal-conduction resistance[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(9): 1913-1926.
[6] 朱润孺, 王昕, 袁野, 等. 飞灰辐射特性与表面温度关联的实验研究[J]. 动力工程学报, 2021, 41(8): 645-649. ZHU Runru, WANG Xin, YUAN Ye, et al. Experimental research for correlation between radiation characteristic and surface temperature of fly ash[J]. Journal of Chinese Society of Power Engineering, 2021, 41(8): 645-649.
[7] 闫慧博, 唐广通, 李路江, 等. 热辐射成像法测量大型炉膛内三维温度场的算法新进展[J]. 洁净煤技术, 2022, 28(5): 97-108. YAN Huibo, TANG Guangtong, LI Lujiang, et al. New progress of algorithm for three-dimensional temperature field in large scale furnace measured by thermal radiative imaging[J]. Clean Coal Technology, 2022, 28(5): 97-108.
[8] 张立峰, 李晶. 基于DenseNet与声学层析成像的温度场高分辨率重建[J]. 动力工程学报, 2023, 43(5): 622-630. ZHANG Lifeng, LI Jing. High-resolution reconstruction of temperature field based on DenseNet and acoustic tomography[J]. Journal of Chinese Society of Power Engineering, 2023, 43(5): 622-630.
[9] 安连锁, 张世平, 李庚生, 等. 电站锅炉声学监测中互相关时延估计影响因素研究[J]. 动力工程学报, 2012, 32(2): 112-117. AN Liansuo, ZHANG Shiping, LI Gengsheng, et al. Factors influencing cross-correlation time delay estimation of acoustic measurement for power boilers[J]. Journal of Chinese Society of Power Engineering, 2012, 32(2): 112-117.
[10] 姚鹏搏, 孙铭阳, 王元, 等. 基于塔克分解和声学测温的三维温度场重建[J]. 动力工程学报, 2024, 44(4): 557-565. YAO Pengbo, SUN Mingyang, WANG Yuan, et al. Three-dimensional temperature field reconstruction based on Tucker decomposition and acoustic thermometry[J]. Journal of Chinese Society of Power Engineering, 2024, 44(4): 557-565.
[11] 周红生, 喻强, 张华, 等. 声学测温技术在燃煤炉膛温度场测量中的应用[J]. 声学技术, 2009, 28(6): 752-756. ZHOU Hongsheng, YU Qiang, ZHANG Hua, et al. The application of acoustic pyrometry in measuring the temperature field of the furnace consuming coal[J]. Technical Acoustics, 2009, 28(6): 752-756.
[12] 朱波. 基于声波的温度场重建方法研究与设计[D]. 成都: 电子科技大学, 2022.
[13] SHEN Xuehua, XIONG Qingyu, SHI Weiren, et al. A new algorithm for reconstructing two-dimensional temperature distribution by ultrasonic thermometry[J]. Mathematical Problems in Engineering, 2015(1): 1-10.
[14] ASTER R C, BORCHERS B, THURBER C H. Parameter estimation and inverse problems[M]. 3rd ed. Amsterdam, the Kingdom of the Netherlands: Elsevier, 2018: 55-91.
[15] WANG Hailin, ZHOU Xinzhi, YANG Qingfeng, et al. A reconstruction method of boiler furnace temperature distribution based on acoustic measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 9600413.
[16] 沈国清, 安连锁, 张波, 等. 电站锅炉声学测温中的声源选择及其声信号互相关特性分析[J]. 现代电力, 2006, 23(3): 41-46. SHEN Guoqing, AN Liansuo, ZHANG Bo, et al. Selection of sound sources and cross-correlation characteristic analysis of acoustic signals in acoustic pyrometry in boilers[J]. Modern Electric Power, 2006, 23(3): 41-46.
[17] ZHANG Juqi, QI Hong, JIANG Donghang, et al. Acoustic tomography of two dimensional velocity field by using meshless radial basis function and modified Tikhonov regularization method[J]. Measurement, 2021, 175: 109107.
[18] 吴莉, 陈励军. 炉膛声学测温中声波飞渡时间测量的实验研究[J]. 声学技术, 2018, 37(3): 211-216. WU Li, CHEN Lijun. Experimental research on 'time of flight' measurement in acoustic pyrometry for furnace[J]. Technical Acoustics, 2018, 37(3): 211-216.

基金

国家重点研发计划资助项目(2021YFC3001803)
PDF(3413 KB)

66

Accesses

0

Citation

Detail

段落导航
相关文章

/